

Science & Technology Facilities Council UK Astronomy Technology Centre

# Sensing and control of segmented mirrors with a Pyramid wavefront sensor

N. Schwartz, C. Correia, C. Petit, J.-F. Sauvage, T. Fusco, K. Dohlen, F. Quiros-Pacheco, J. Paufique, J. Vernet, N. Thatte, F. Clarke













# Context of study: HARMONI & ELT

### HARMONI

- SCAO system analysis
  > 100x100 PYR WFS @ 500 Hz, in I-Band
- Nominal seeing
  - > 0.65" (r0≈15cm), 30° zenith, high flux





### Segmented deformable mirror (M4)

- Segmented thin shell made of 6 discontinuous petals
- Petals have a common reference body



### Secondary mirror unit: Spiders

- Supported by six 50 cm wide spiders > r0
- Matching the 6-petal geometry
- One PYR pixel is 37cm (D/100) < 50cm

# Motivation: Impact of large spiders & M4

### No spiders & continuous DM

- Good performance (pure AO perf.)
  > 101 nm RMS residual error



### Spiders & M4

- Very poor performance
  - >>5000 nm RMS res. error
  - Additional differential piston between petals > ±7 waves



Adaptive Optics for Extremely Large Telescopes – 30 June 2017

# Differential piston: Atmosphere + Islands

• Differential piston is present in atmospheric turbulence





UK Astronomy Technology Centre

- For large gaps, differential piston not well sensed by the WFS
  - PYR or SH
  - π ambiguity (λ jumps)
- Additional unwanted term is injected by AO loop



Slide 4

Adaptive Optics for Extremely Large Telescopes – 30 June 2017

Wavefront Sensing

Control

### Handling differential pistons

- Provide a simple solution to
  > Remove diff. pistons in the presence of turbulence (Δφ<sub>AO</sub>)
  - Correct atmospheric differential pistons (Δφ<sub>ATM</sub>)
- Δφ<sub>AO</sub> & Δφ<sub>ATM</sub> are of the same order of magnitude
  ➤ Hard to disentangle
- SCAO error budget study
  > 70nm RMS of additional diff. piston is acceptable to meet specifications (in quadrature)

Astronomy Technology Centre

# Differential piston is an AO related issue



Adaptive Optics for Extremely Large Telescopes – 30 June 2017

See talks this afternoon: Fernando Quiros (GMT)

### Handling differential pistons: WFS

- Existing solution: add another WFS
  - $\succ$  Differential piston can be sensed modulo  $\lambda$
  - $\succ$  WFS<sub>1</sub> at  $\lambda$  & WFS<sub>2</sub> at  $\lambda$ + $\Delta\lambda$
  - Increased cost and complexity!
- Crazy ideas (for HARMONI)
  - > WFSing at longer  $\lambda$  to have spider width  $\leq$  r0.
    - Detector in K-Band? + Using science photons!
  - > Add information under the footprints of the spiders
    - Fourier extrapolation
    - Defocusing the WFS

e & Technology Facilities Council Astronomy Technology Centre

 Phase on either side of spiders is decorrelated: Cannot create correct information



Defocused the WFS to spread information under the spiders

Charlotte Z. Bond et al., "Iterative wave-front reconstruction in the Fourier domain," Opt. Express 25, (2017)

### Handling differential pistons: WFS

- Valid detector pixels & modulation
  - Useful signal is contained in the diffracted light
    - Include region under the spiders' shadow
  - Diffracted light outside the pupil footprint comes with small modulation
    - Keep modulation as small as possible
    - Choice: 3 or 5λ/D
  - Gaps=0.5m & pixels=0.37m (D/100)
    - Little signal is present!
  - It's a prerequisite but it's insufficient

#### Illuminated PYR pixels





C. Vérinaud and S. Esposito, "Adaptive-optics correction of a stellar interferometer with a single pyramid wave-front sensor," Opt. Lett. 27, 470-472 (2002) Pinna et al, "Why not use the pyramid to phase your ELT?", Wavefront Sensing in the VLT/ELT era, Marseille (2016)

Science & Technology Facilities Council UK Astronomy Technology Centre

Slide 8

# Removing diff. piston from commands

- Filtering out segment pistons in correction phase
  - > Atmosphere contains segment pistons ( $\Delta \phi_{ATM}$ )
  - Leads to truncated correction phase & ultimately poor performance
- Penalty on the commands
  - >  $c = (M^TM + \alpha V^TV)^{-1}M^Ts$ . V contains the mode to be rejected such that  $v_i^Tc < \epsilon$
  - $\succ$  The  $\alpha$  parameter allows for selectivity and trade-off
  - > We can penalise 1st derivatives, curvature, step at the DM edges etc.
  - Difficult trade-off that might change from frame to frame
- Relying on prior information

Astronomy Technology Centre

- Use pseudo-open loop control
- Rely on phase spatial statistics to smooth the DM commands
- Initial results are not conclusive. Work in progress!

### Phase closure: Estimating the diff. piston

### Method

Assume piston can be extracted from edges

- 1. Average phase along radius at edge of segment
- 2. Extrapolation of turbulence in the middle of spider based on each segment phase (linear, spline...)
- 3. Solve linear system (6 unknowns, 6 measurements) to find piston of each segment





#### 2nd step: Extrapolate piston



### Phase closure: Results



- Input turbulence
- No diff. piston handling
- Phase closure

Astronomy Technology Centre

- Phase closure (w/ moving average)
- Pure fitting error

- Clear gain observed
  - Average residual error: 165 nm RMS
  - Large variation: max 371 nm
- Data averaging methods
  - Radial averaging along edges
  - Actuator position or phase
  - With and without time averaging (Δφ<sub>ATM</sub> has slow dynamics)
- Basic limitations of the method
  - Loss of continuity b/c gaps larger than correlation distance
  - Biased estimation of information used to ensure continuity
- Conclusion
  - Phase extrapolation + phase closure doesn't perform well enough
  - Island error: 134 nm! >> 70nm

### Slaving actuators: Approach

- Goal
  - Impose continuity of the DM surface
- Approach details
  - Pair-wise coupling of edge actuators
  - Common reference body gives absolute position of the 6 DM petals
- Drawbacks

Astronomy Technology Centre

- We loose in actuators count (162 DoF)
- Completely negligible in error budget
  - Fitting error from 85nm to 86nm





### Slaving actuators: Results

- Good average performance
  ➤ 107 nm RMS (in median seeing conditions 0.65")
- Good stability

Astronomy Technology Centre

- Min 100 nm & max 140 nm
- Remaining residual errors
  - The unwanted differential piston is strongly reduced but a small amount remains
  - Possible improvements
    - Currently using scalar gain: may be improved by modal gain
    - Or by combining w/ other methods



Control

Slide 13

### Results summary

#### Pure AO performance

|                | Average<br>residual error | Additional error term | Strehl in K | 70nm RMS additional differential piston is acceptable to meet |
|----------------|---------------------------|-----------------------|-------------|---------------------------------------------------------------|
| No spiders     | 101 nm RMS                | -                     | 92%         | specifications                                                |
| No correction  | > 5000 nm RMS             | + 5000 nm             | 0%          |                                                               |
| Regularisation | Work in progress          | -                     | -           |                                                               |
| Closure        | 168 nm RMS                | + 134 nm              | 86%         | ×                                                             |
| Slaving        | 107 nm RMS                | + 35 nm               | 91%         | $\checkmark$                                                  |

#### Long exposure (5sec) PSF comparison (K-Band)

Adaptive Optics for Extremely Large Telescopes – 30 June 2017

# Conclusions

- Investigated both WFS and control based solutions
  - > None of the WFS-only solutions are conclusive on their own.
  - ➢ We tried several methods ensuring the continuity of the phase across the pupil → Doesn't deliver the required correction levels.
  - Regularisation is still work in progress
- We propose a simple and robust solution
  - It relies on position/voltage control (i.e. slaving the edge actuators) combined with a small PYR modulation
  - It relies on knowing the absolute position of the 6 DM petals (ref. body)
  - Works for SCAO, to be demonstrated for LTAO
- Remaining work

Astronomy Technology Centre

- Improvements
  - Combine with optimal modal gain for an optimal control of the filtered modes
  - Ensure solution compatible with a force actuators
- Further analysis
  - How does the correction performs as a function of seeing?
  - Performance as a function of SNR (NGS magnitude)

