Pyramid Wavefront Sensing for Extreme Adaptive Optics LAUREN SCHATZ, JARED MALES, MICHAEL HART, OLIVIER DURNEY, LAIRD CLOSE, OLIVIER GUYON, KATIE M. MORZINSKI, JENNIFER LUMBRES, KELSEY MILLER

MagA

Outline

- The MagAO-X system overview
- Pyramid Wavefront Sensing Ongoing Research

Why Direct Imaging?

- ► With direct imaging we can:
 - Use spectrometer and polarimeters on planets
 - Look for evidence of life on other planets

Why is this so hard to do?

- ► Atmospheric turbulence
- Contrast

SCEXAO+CHARIS

(extreme AO+ Integral Field Spectrograph)

Data from CHARIS instrument during its commissioning observation run clearly shows multiple planets around the star known as HR 8799. Image credit: CHARIS/Princeton Team and NAOJ.

History and Context: $MagA \odot \rightarrow MagA \odot 2k \rightarrow MagA \odot k$

<u>MagAO</u>

- 585 adaptive secondary mirror
- Clone of LBTAO
- PWFS
- On 6.5m Magellan Clay
- 1kHz speed
- Clio IR camera (1-5 microns)
- VisAO (.6-1 microns)

<u>MagAO-2K</u>

- 2kHz upgrade
- 300 to 400 controlled modes (degrees of freedom) on DM

<u>MagAO-X</u>

- Builds off of MagAO
 and SCExAO
- Three phase development

MagA

Overview

- Visible-to-near-IR "extreme" exAO system
- ► 2048 actuator BMC DM
- ▶ >70 % Strehl at H-alpha
- ▶ 3.7kHz speed
- Coronagraphs delivering contrasts
 <10^-4 from 1-10 λ/D
- ► PWFS
- LOWFS
- Imagers and spectrographs

- WFS
- Coronagraphs
- Science Cameras

Lower bench

Coronagraph

MagAO: Clio+vAPP Coronagraph

Vector Apodizing Phase Plate (vAPP) Coronagraph

University of Leiden: Frans Snik, David Doelman, Christoph Keller, Matthew Kenworthy

Phase-Induced Amplitude Apodization PIAACMC

Wavefront sensor

Figure 2: Fabricated pyramid made in Arcetri.

Pyramid Wavefront Sensor

Pyramid Wavefront Sensor

- ► Focal plane is split by pyramid
- Wavefront Sensing done in pupil plane
- Benefits from the full resolution of the telescope
- # Pixel in pupil = # of degrees of freedom controlled (actuators)

Sensitivity

MPYRWFS modeled >> modulation than on sky MPYRWFS

Guyon 2005

PWFS Design for MagAO-X

Schatz et. al. in prep

Differences from Arcetri Design

- OAP that forms pyramid focus after TTM
- TTM in collimated space
- No dynamic focus on pyramid
 - Designed to be fixed with respect to the coronagraph
 - Focus comes from M2 compensation

Expected Performance

Parameter	Requirement
Wavelength Range	600- 1000 nm
Pupil Size	56 pixels; 2.688 mm
Pupil Separation	60 pixels; 2.880 mm
Pupil Tolerances	$\Delta < 1/10$ th pixel; 2.4 μ m
Lens Diameter	$10~\mathrm{mm} < \mathrm{D} < 20~\mathrm{mm}$

- Achromatic prism
- Designed by
 Arcetri
- Same pyramid in LBTAO and MagAO

Schatz et. al. in prep

% Illumination	# of Actuators
100%	1958
90%	166
80%	24
70%	46
60%	20
50%	18
< 50%	904

Schatz et. al. in prep

2232 Controlled modes > # of actuators on DM

Expected performance of PWFS

Modulated

Unmodulated

-Expected pupils on OCAM - 8th mag guide star -Log stretch

MagAO-X Raw Contrast Performance

- 30 Second exposure times
- 25 %-ile seeing conditions
 - ~10^-4 Contrast

0.4

0.2

Better than 10^-3 Contrast

Better than 10^-2 Contrast

12th Mag GS

0 -0.2-0.40.4 -0.4-0.20.2 $\Delta X ["]$

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

8th Mag GS

10th Mag GS

vAPP design by David Doelman

WFS Testbed

Olivier Guyon, Nemanja Jovanovic, SCExAO team

Unmodulated Pyramid Pupils

Schatz et. al. in prep

3PWFS Simulations

U.S. AIR FORCE

Trying to understand difference in sensitivity and contrast for extended object wavefront sensing and imaging.

- 3PWFS
- 4PWFS
 - Reflective/refractive

Path-finding for a reflective 3PWFS for GMagAO-X for GMT

Benefits:

- Easier to manufacture
- Potential detector savings
- Potential gains in SNR

Schatz et. al. in prep

4PWFS Refractive

3PWFS Refractive

Acknowledgements

Jared Males

Advisor, MagAO-X P.I.

NagA

Logo PDR Approved

Michael Hart

Co-advisor

 \bigcirc

Kelsey Miller

Justin Knight

Jhen Lumbres

Alex Rodack

Graduate Students

Pyramid Wavefront Sensing for Extreme Adaptive Optics LAUREN SCHATZ, JARED MALES, MICHAEL HART, OLIVIER DURNEY, LAIRD CLOSE, OLIVIER GUYON, KATIE M. MORZINSKI, JENNIFER LUMBRES, KELSEY MILLER

NagA

