The rotating disk and hourglass-shaped nebula around 89 Herculis

I. Gallardo Cava¹, J. Alcolea¹, V. Bujarrabal¹, M. Gómez-Garrido¹, and A. Castro-Carrizo² ¹OAN-IGN (Spain), ²IRAM (France)

CONTEXT

There is a class of binary post-AGB stars that show evidence of being surrounded by stable, rotating disks [1,6]. These sources exhibit a significant NIR excess and narrow CO line profiles, characteristic of rotating disks. Their SEDs reveal the presence of hot dust close to the stellar system, and its disk-like shape has been confirmed by interferometric mm and IR data [2,5]. The mm observations also confirm the presence of an expanding structure surrounding the rotating disk. Thus, we can identify two categories: disk-containing nebulae dominated by the rotating component, and those dominated by the expanding structure.

REFERENCES

AN eventrs mebula web

GEOGRÁFICO NACIONAL

RESULTS & CONCLUSIONS

SPANISH

Previous NOEMA mm-interferometric studies of 89 Herculis were affected by flux losses in the most extended regions [3], preventing the true size of the nebula from being detected and, consequently, making it impossible to estimate the total mass of the hourglass-shaped extended component. Thus, we performed on-the-fly observations of this source with the IRAM-30m telescope to obtain total-power maps of the ¹²CO and ¹³CO J = 2-1emission lines. Then, we combine these total-power maps with our previous NOEMA data, resulting in a comprehensive dataset that captures the full extent of the nebula. The new combined maps provide a complete picture of the detectable flux and offer high spatial resolution thanks to the interferometric data (see figure). The hourglass-shaped outflow surrounding the rotating disk is larger and more massive than previously estimated. According to our new maps and our accurate model, the total nebular mass is 1.8 \times 10⁻² M_o, with ~65% of the mass coming from the outflow. Therefore, we classify the nebula surrounding the binary post-AGB star 89 Herculis as being outflow-dominated. See [4] for details.

[1] Bujarrabal, V., Alcolea, J., Van Winckel, H., et al. 2013a, A&A, 557, A104
[2] Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., et al. 2016, A&A, 593, A92
[3] Gallardo Cava, I., Gómez-Garrido, M., Bujarrabal, V., et al. 2021, A&A, 648, A93
[4] Gallardo Cava, I. Alcolea, J., Bujarrabal, V., et al. 2023, A&A 671, A80
[5] Kluska, J., Van Winckel, H., Hillen, M., et al. 2019, A&A, 631, A108
[6] Van Winckel, H. 2003, ARA&A, 41, 391

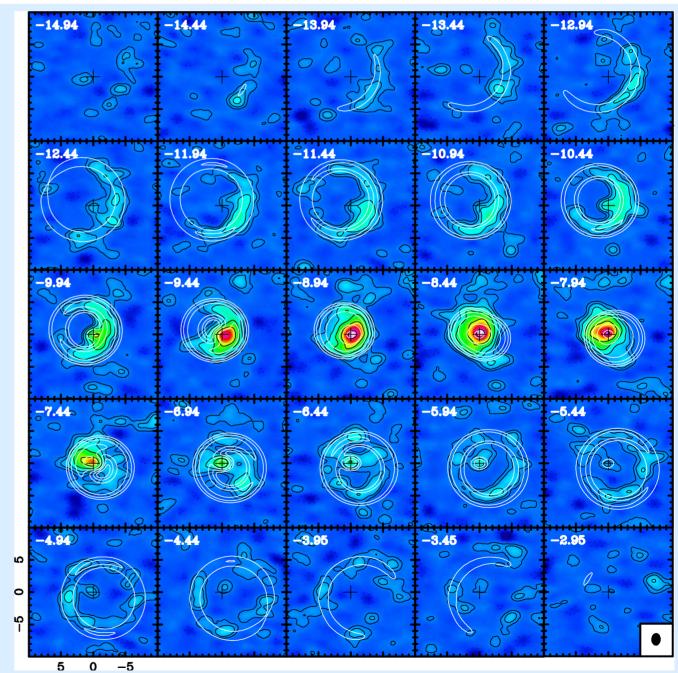


Figure: Velocity maps of the ¹²CO J = 2-1 line emission around 89 Herculis, with model predictions (white contours) superimposed on the NOEMA + IRAM-30m observations. Offsets are in arcseconds. Adapted from [4].

i.gallardocava@oan.es